8 Ways a Silicon Root of Trust Can Lay the Foundation of Security and Integrity for Your Business-Critical Servers

The security and integrity of your organization's business-critical servers are at the very foundation of your trusted computing infrastructure and trusted supply chain. Here are eight ways that leading solution providers are leveraging a **silicon root of trust** to help you protect your organization's servers from unauthorized changes throughout their lifecycle — from sourcing and manufacturing; to everyday bootup, updates, and execution; to eventual repurposing, retirement, or disposal.

To provide servers with a silicon root of trust , a unique digital fingerprint (a <i>cryptographic hash</i>) is embedded in the server chip at the factory — which enables servers to anchor their secure boot process to an unchangeable (<i>immutable</i>), silicon-based source.
Specialized services are available to ensure the domestic sourcing , manufacturing , and provenance of industry-standard servers that include the advanced security capabilities described below — built by vetted employees, in highly secure domestic facilities — up to the time they become an integral part of your organization's trusted computing infrastructure or trusted supply chain.
To ensure the authenticity and integrity of the server's firmware , only firmware that has been digitally signed by its silicon root of trust will be allowed to load and run — making it virtually impossible for servers to execute compromised code (e.g., <i>malware</i> , <i>zero-day exploits</i>).
If recovery from unauthorized changes to server code should be needed, firmware is automatically restored to a safe, previously known setting.
To establish trust with additional server components (e.g., drivers, OS boot loaders) during the secure boot process, standardized mechanisms ensure that they too are authenticated and digitally signed.
Built-in monitoring can automatically check essential server firmware at regular intervals (e.g., daily) — and alert your IT administrators for manual remediation, or automatically recover to a known good state.
Automation of common server tasks (e.g., server provisioning; continuous, proactive monitoring of system health; server management; power and thermal control; and secure, out-of-band remote management) helps your organization's IT staff to support higher scale at lower total cost.
By permanently erasing data and resetting security attributes, your organization's servers can be securely repurposed, retired, or disposed of when the time comes.

18573